Optimal Algorithms for L1-subspace Signal Processing

نویسندگان

  • Panos P. Markopoulos
  • George N. Karystinos
  • Dimitris A. Pados
چکیده

Abstract We describe ways to define and calculate L1-norm signal subspaces which are less sensitive to outlying data than L2-calculated subspaces. We start with the computation of the L1 maximum-projection principal component of a data matrix containing N signal samples of dimension D. We show that while the general problem is formally NP-hard in asymptotically large N , D, the case of engineering interest of fixed dimension D and asymptotically large sample size N is not. In particular, for the case where the sample size is less than the fixed dimension (N < D), we present in explicit form an optimal algorithm of computational cost 2 . For the case N ≥ D, we present an optimal algorithm of complexity O(N). We generalize to multiple L1-max-projection components and present an explicit optimal L1 subspace calculation algorithm of complexity O(N) where K is the desired number of L1 principal components (subspace rank). We conclude with illustrations of L1-subspace signal processing in the fields of data dimensionality reduction, direction-of-arrival estimation, and image conditioning/restoration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the Number of Wideband Radio Sources

In this paper, a new approach for estimating the number of wideband sources is proposed which is based on RSS or ISM algorithms. Numerical results show that the MDL-based and EIT-based proposed algorithm havea much better detection performance than that in EGM and AIC cases for small differences between the incident angles of sources. In addition, for similar conditions, RSS algorithm offers hi...

متن کامل

Some Options for L1-subspace Signal Processing

We describe ways to define and calculate L1-norm signal subspaces which are less sensitive to outlying data than L2-calculated subspaces. We focus on the computation of the L1 maximum-projection principal component of a data matrix containing N signal samples of dimension D and conclude that the general problem is formally NP-hard in asymptotically large N , D. We prove, however, that the case ...

متن کامل

Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)

Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...

متن کامل

Adaptation of Rejection Algorithms for a Radar Clutter

In this paper, the algorithms for adaptive rejection of a radar clutter are synthesized for the case of a priori unknown spectral-correlation characteristics at wobbulation of a repetition period of the radar signal. The synthesis of algorithms for the non-recursive adaptive rejection filter (ARF) of a given order is reduced to determination of the vector of weighting coefficients, which realiz...

متن کامل

Weighted subspace fitting using subspace perturbation expansions

This paper presents a new approach to deriving statistically optimal weights for weighted subspace fitting (WSF) algorithms. The approach uses a formula called a “subspace perturbation expansion,” which shows how the subspaces of a matrix change when the matrix elements are perturbed. The perturbation expansion is used to derive an optimal WSF algorithm for estimating directions of arrival in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2014